
Genie Pro: Robust Image Classification using
Shape, Texture and Spectral Information

Simon Perkins*a, Kim Edlunda, Diana Esch-Moshera, Damian Eadsa,

Neal Harveya, Steven Brumbya

aLos Alamos National Laboratory, Space and Remote Sensing Sciences,
Los Alamos, NM 87545, USA

ABSTRACT
We present Genie Pro, a new software tool for image analysis produced by the ISIS (Intelligent Search in Images and
Signals) group at Los Alamos National Laboratory. Like the earlier GENIE tool produced by the same group, Genie Pro
is a general purpose adaptive tool that derives automatic pixel classification algorithms for satellite/aerial imagery, from
training input provided by a human expert. Genie Pro is a complete rewrite of our earlier work that incorporates many
new ideas and concepts. In particular, the new software integrates spectral information; and spatial cues such as texture,
local morphology and large-scale shape information; in a much more sophisticated way. In addition, attention has been
paid to how the human expert interacts with the software: Genie Pro facilitates highly efficient training through an
interactive and iterative “training dialog”. Finally, the new software runs on both Linux and Windows platforms,
increasing its versatility. We give detailed descriptions of the new techniques and ideas in Genie Pro, and summarize
the results of a recent evaluation of the software.

1. INTRODUCTION
The task of turning raw satellite imagery into semantically meaningful maps and overlays is a key area of remote
sensing activity. Image analysts, in communities ranging from environmental monitoring to intelligence, have the job
of transforming satellite imagery into maps of terrain classifications, crop types, road networks, buildings, and so on,
typically in a form that can be placed within a GIS database for use by other people. To be most useful, these maps must
be continually kept up to date as new imagery arrives, which in turn requires that the analysts perform their mapping
tasks as quickly as possible, while still ensuring an adequate degree of accuracy. As satellite imagery becomes available
in ever increasing volumes, at ever increasing resolutions, and with ever greater numbers of spectral bands, it is clear
that we urgently require sophisticated automated or semi-automated tools for helping analysts derive maps quickly
enough to keep up with the data deluge. Genie Pro is one such tool.

Imagery comes in many different varieties, from panchromatic imagery with just a single band, through to hyperspectral
imagery with hundreds of spectral bands. Currently available commercial imagery has resolutions that vary from pixel
sizes of several kilometers down to under a meter. Mapping tasks also come in many different forms. The task of
mapping roads, for instance, is quite different from the task of mapping pine forest extents. However, despite this
diversity, there is a broad range of mapping tasks that have a lot in common. Ultimately, most mapping tasks can be
seen as variations on the “pixel labeling” problem: given an image with one or more spectral bands, assign a label to
every pixel in that image representing the category of the scene under that pixel. Once we have an accurate pixel
labeling, it is then relatively straightforward to derive vector overlays suitable for storing in a GIS database. Genie Pro
is designed to be a general purpose semi-automated mapping tool that can be used for many different mapping tasks on
many different kinds of imagery, and its central function is to assign labels to pixels.

Accurately assigning a label to a given pixel requires making use of the information in the image in a highly data- and
task-specific way. Identifying water in a hyperspectral image might be accomplished using a fairly straightforward
spectral algorithm, for instance; while identifying roads in panchromatic imagery is clearly going to require the use of
spatial context and shape information. Even tasks that are superficially similar may require very different approaches:
finding roads in a desert is very different to mapping urban streets. Trying to equip Genie Pro with explicit information
about all these different kinds of targets and data sources would be impractical, so instead, Genie pro is an adaptive tool.

* s.perkins@lanl.gov

Out of the box, it knows very little about crops, roads and different kinds of imagery, but it has the ability to learn from
examples provided by an image analyst. A large amount of effort in Genie Pro goes into making this learning process as
efficient and painless as can be achieved, and making as much use of the information provided as possible.

A typical Genie Pro session goes something like this:

1. The image analyst loads a satellite image into the Genie Pro display.
2. The image analyst sparsely “marks up” the image using simple raster-based painting tools, indicating the

locations of a few examples of different targets of interest.
3. The analyst hits the “Train” button, and Genie Pro attempts to use the training markup to derive a general pixel

classifier.
4. After a short time, the analyst applies the resulting pixel classifier to the rest of the image and inspects the

results. If the classifier has made some mistakes, the analyst has the option of adding more training data and
continuing training, or of manually correcting the results by hand.

5. Once the analyst is happy with the pixel labeling, a corresponding vector layer can be generated and exported
to the GIS of his or her choice.

The remainder of this paper describes this training interaction in more detail and discusses how Genie Pro attempts to
derive an effective pixel classifier in a general-purpose way for varied tasks and data types.

2. BACKGROUND

2.1. Performance Issues in Pixel Classification
The performance of human analysts performing a mapping task provides a gold standard against which we can assess
the performance of our software. While we do not know exactly how humans go about deciding which pixels belong to
different categories when analyzing an image, we can be reasonably sure that they make use of at least the following
visual cues:

• Spectral content / color of the pixel concerned.
• Spectral content / color of nearby pixels.
• Texture properties of the local pixel neighborhood.
• Local shape characteristics, e.g. if it’s long and thin it might be a road.
• Higher level shape characteristics, e.g. if it looks locally like a road, but is very straight and ends suddenly at

both ends, then it might be an aircraft runway.
• Proximity and spatial relationship to other identified objects and regions.

Different cues are going to be more useful on some problems and on some kinds of data than others. In addition, many
of these categories are very broad. In existing image processing research, “Texture Properties”, for instance, covers a
huge variety of measurable quantities, ranging from simple standard deviations of local intensity, through to “texture
directionality” measures, texel descriptions, Markov Random Field statistics, co-occurrence matrices, and so on.1 These
measures are considerably further complicated when we start looking at multi- and hyperspectral imagery, when we not
only have to decide what texture measure is appropriate, we also have to decide what spectral channels or combination
of channels they should be applied to.

In order to make a software tool that is as general purpose as possible, we should have the ability to make use of as
many of these visual cues and attributes as is necessary. But attempting to build an adaptive system that considers every
possible measure that can be derived from image processing an image is doomed to failure. Not only is it unlikely to be
computationally feasible, but in addition, the huge number of parameters that have to be fit in such a scenario would
almost certainly lead to severe “overfitting” problems. Any reasonable system is therefore going to have to make
choices as to which attributes to focus its attention on. But how can it do this in a general way?

2.2. Usability Issues in Pixel Classification
An issue that any adaptive system has to face is how to get hold of reliable training data. In Genie Pro, that data has to
come from an image analyst, in the form of “training markup”. But marking up images is a tedious job. If the system is
not able to make efficient use of training markup, then the analyst may well feel that their time would be better spent
just creating a map by hand.

After interacting with analysts in the field, we have come to the conclusion that in many cases, providing user-friendly
and efficient manual “cleanup tools” is an essential adjunct to trying to achieve the best automatic delineation of
features of interest. Analysts often prefer a tool that does 90% of the job quickly and leaves a few bits that need
manually correcting; to one that maybe gets 99% of the job done, but requires much more extensive training.

Finally, as with any image analysis software, issues of platform compatibility, file formats and integration into existing
workflows are extremely important in practice. It is no use having the best mapping tool ever, if it doesn’t understand
the image file format used by the analyst.

2.3. Previous Work
Over the last six years, we have developed a very flexible and general purpose approach to pixel classification that can
be applied to a great variety of different targets in different kinds of imagery. The first product of this approach was the
GENIE pixel classification tool.2 GENIE was soon followed by a similar tool called AFREET, which differed in details
but followed the same basic approach.3 For simplicity, we will describe AFREET here, but virtually everything that is
said applies to GENIE as well. The essential idea behind AFREET and related tools is that, rather than decide in
advance what kinds of attributes and measures will be useful in classifying pixels, we give our system a “toolbox” of
image processing operations with which it can extract those image attributes it determines to be most useful.

More specifically, AFREET uses an evolutionary algorithm to explore a space of possible “attribute extractors” that
derive numerical values from pixel local neighborhoods. The numerical values from a given pixel neighborhood can
then be combined together in a conventional machine learning framework to produce a final predicted label for the pixel
at the center of each neighborhood. Attribute extractors are themselves composed of simpler image processing
operations joined together in small image processing pipelines. This flexible structure allows the attribute extractors to
derive numerical measures that describe a very varied array of image characteristics: from spectral characteristics,
through texture properties and on to local morphological properties and spatial context. Different tasks and different
kinds of imagery will require different attribute extractors, but the user of the system does not have to know any of the
details. In effect we are gaining an enormous amount of flexibility in our pixel classifier structure, at the expense of the
extra computational effort required by the evolutionary algorithm to explore different possible extractors for the task at
hand.

In a typical AFREET classifier we compute anywhere from three to ten numerical attributes for each overlapping pixel
neighborhood in an image. Each numerical attribute is produced as the output of a single attribute extractor. As
described above, these attributes represent spectral and spatial qualities of the corresponding neighborhoods. So, for
each pixel in the image, we have a vector containing between three and ten numerical values. Note that for a given pixel
classifier, we always use the same attribute extractors on every pixel in the image, so all the vectors are the same length
for a given image and classifier. In order to produce a final predicted label, we feed these numbers into a simple
discriminant function. Typically we take a linear combination of the numerical attributes and apply a threshold.† The
weights used in the linear combination and the threshold are obtained either by calculating the Fisher Discriminant
direction and performing a 1D search for an optimal threshold,4 or by using a linear Support Vector Machine.5 In
practice the Fisher Discriminant works considerably faster and gives comparable results to the SVM. Figure 1 illustrates
the basic structure of the AFREET classifier.

† A single linear combination followed by a threshold is sufficient for the two class case, where for instance, pixels are
to be classified as “target of interest” vs. “background”. AFREET can also handle more than one class using multiple
sets of weights and thresholds. In this paper we will consider only the two class case, but the extension to multiple
classes is straightforward.

Attribute
Extractor

Attribute
Extractor

Attribute
Extractor

Linear
Comb.

Threshold

Input Image Neighborhood
Output Pixel Label Image

Figure 1: Structure of basic AFREET classifier.

Details of the evolutionary algorithm used to optimize the attribute extractors can be found in Perkins et al. 3 but the
essential idea is that we initialize each attribute extractor randomly, and find the best linear combination of the
computed attributes that maximizes the match between the predicted label values and the label values supplied by the
user in the training markup. Then we make a random change to a single attribute extractor and recompute the linear
combination. If the match between user-supplied and predicted labels improves then we keep the change, otherwise we
discard it. As this process is repeated many times, the attribute extractors tend to converge on those that are best suited
for the imagery and classification task at hand.

AFREET and GENIE were successfully used in real problems of interest to our sponsors, but as time went on, it became
clear that they could be improved considerably. In particular, GENIE was written as “research code” and suffered from
problems of portability and maintainability. In addition, a number of new ideas had been suggested and we needed a
new tool in which to implement these ideas. So it was decided to embark on a complete rewrite that incorporated the
best elements of GENIE and AFREET, with a particular view to creating a piece of software that could be used reliably
in an operational scenario, and that could be used as a testbed for new ideas and concepts. This new tool is called Genie
Pro.

3. GENIE PRO IN DETAIL

3.1. The Genie Pro Processing Pipeline
One of the major limitations of the basic architecture shown in Figure 1 is that it embodies a “short, fat processing
pipeline”. The individual attribute extractors can contain several processing steps, but the extractors all work
independently of one another. In contrast, human designed processing pipelines tend to be considerably “longer and
narrower”, with multiple processing stages. The output of one stage feeds into the input of the next stage in a way that is
impossible to achieve in the basic AFREET classifier. It was realized that we might be able to considerably improve
performance by adding multiple stages to the processing pipeline and specializing each stage for different tasks. In
particular, experiments showed that a second stage of “shape-based morphological” processing often produced
considerably cleaner results than could be achieved with the original AFREET or GENIE architectures. Further testing
showed that a final layer of “connected components shape filtering” could also greatly reduce the false alarm rate.

The new Genie Pro processing pipeline is shown in Figure 2. The circles marked “Spectral / Texture Operations” and
“Grayscale Morphology Operations” represent sets of attribute extractors as before, but this time each set is specialized
for a specific task, as will be described later.

Spectral /
Texture

Operations

Raw Image

Spectral /
Texture

Attributes

Linear
Comb.

Initial Class
Probabilities

Grayscale
Morphology
Operations

Morphological
Attributes

Initial Class
Labels

Threshold
+ Shape
Filtering

Final Class
Labels

Linear
Comb.

Figure 2: Genie Pro processing pipeline.

We will now describe the various components of this pipeline in more detail.

3.2. Spectral and Texture Attribute Extraction
The first processing stage of the new pipeline is identical to that show in Figure 1 with one exception: the operators that
are used in the attribute extractors in this stage are constrained to be simple spectral and textural operators. No
complicated morphological operations can appear here. This means that the image processing computational load of this
stage is often considerably reduced from Figure 1 since many morphological operators are among the most expensive
image processing operations.

Figure 3 shows the structure of a typical first stage with three attribute extractors. The four squares at the bottom of the
Figure represent a four-band input image. The labeled boxes above those represent primitive image processing
operations, and the three squares at the top represent the three attribute values calculated for every overlapping pixel
neighborhood in the image.

Figure 3: Spectral and texture attribute extraction.

Smooth

StdDev

NormDiff

AbsDifNormDiff Gabor

Once we have obtained attribute values for each pixel in the image, the values are combined in a weighted linear
combination to produce a single grayscale image, in which high values correspond to pixels that are likely to contain the
feature of interest, and low values correspond to pixels that are unlikely to contain that feature. Note that we do not
threshold the output at this stage to obtain discrete class labels – to do so at this stage would reduce flexibility.

Semantically, the spectral / texture processing stage can be thought of as a “material identification” stage, since
materials can often be identified by these kinds of attributes. For instance, asphalt may show up fairly readily as a
smooth black material in color imagery. However, if we’re trying to find roads, for instance, then asphalt may be seen in
many other places, such as on roof tops. In addition, for imagery with few spectral bands, many materials will have very
similar spectral and textural signatures. So, in general the spectral / texture provides a “first cut” – it highlights regions
that might be the feature of interest but the result is likely to contain many false alarms.

3.3. Local Morphological Attribute Extraction
In order to eliminate many of those false alarms, the single grayscale image from the output of the first stage of
processing is then passed to the second processing stage. Recall that regions of high intensity in this image indicate
pixels that are spectrally and texturally similar to those in the target features identified in the training data. In the second
stage we extract morphological and local shape characteristics of neighborhoods in this grayscale image in an attempt to
further eliminate false alarms. Figu e. Note its similarity to the first

Figure 4: Morphological attribute extraction.

Again we obtain a new set of grayscale images, one corresponding to each of the morphological attribute extractors in
this stage. The pixel values in these grayscale images are again combined together using a linear combination to
produce a grayscale image in which high value pixels correspond to regions that are likely to contain the feature of
interest.

re 4 shows the basic structure of this processing stag
stage, except that this time the input is provided by the output of the first stage rather than coming direct from the image
under analysis. In addition, the operators used by the attribute extractors in this stage are primarily morphological
operations: operators such as morphological openings and closings with various different shaped structuring elements.

Open

OpenCloseAbsDif
f

Close

3.4. Thresholding and Shape Filtering
The final stage of Genie Pro consists of thresholding the grayscale image to obtain discrete labels, and performing an
optional shape-filtering step. An initial threshold is chosen automatically so as to maximize the match between the
predicted labels and the training labels supplied by the user. The user may then adjust the threshold manually to obtain a
more visually acceptable result.

However, there are some features that it is hard to distinguish between on the basis of spectral / texture and local
morphological attributes. For instance, distinguishing between a road and an aircraft runway requires us to look at the
whole region identified as a road. It may not be possible to find a threshold value that correctly classifies both objects at
the same time. To tackle these situations, the user may employ an optional final filter that uses large scale shape
information to distinguish difficult features that are spectrally and texturally and that have similar local shape
characteristics. In typical usage, the user first manually selects a threshold that is low enough such that all objects of the
target class that are to be detected are indeed detected. In ambiguous cases, this will produce a number of false alarms.
The user can then select a shape filtering rule that will eliminate these false alarms based on their high level shape
characteristics.

Unlike earlier processing stages though, this high level shape analysis does not work at the pixel level. Instead it works
on “connected components”: regions of pixels of a particular class that are connected together into a single object. A
standard two-pass connected components algorithm applied to the threshold results image is used to derive the
connected components, and the user may then select from a library of shape filters to reject ndesirable false alarms. For
example, they may choose a rule that all connected compon s bigger than 1000 square pixels in size should be
rejected, or that objects that are more be rejected.

. Much of the training process is described in Perkins et al.3 so here we will summarize the basic concepts
ing algorithm.

ave

k.

on, an initial classifier is created by initializing all the attribute extractors to random
structures, produced by combining together randomly chosen operators from Genie Pro’s library of image processing

 u
ent

 than five times as long as they are thin should

3.5. Learning to Classify Pixels
In the description above, we have focused on how the Genie Pro classifier pipeline functions, but we have not yet
discussed how we obtain the weights for the linear combinations, or how we determine what goes into the attribute
extractors
while highlighting the differences from the earlier train

To start with, the user must supply some training markup using the Genie Pro user interface. Figure 5 illustrates some
typical markup for a water mapping task. The water has been marked in green, while some examples of non-water h
been marked in red. Pixels that have no markup over them are considered “unlabeled” and are not used in training the
classifier.

Figure 5: Typical user markup on a small image for the water mapping tas

When the user hits the “Train” butt

operations. Operators in the spectral/texture stage are restricted to spectral and textural operations, while those in th
morphological stage are limited to morphological operations.

The raw image is first run through the spectral/textural attribute extrac

e

tors to extract a small number of “attribute
lanes”, representing vectors of attribute values at each pixel location. Genie Pro then computes coefficients for a linear

s

Several steps of the evolutionary algorithm described in Perkins et al.3 are then performed. Roughly, this involves
making random changes to the attribute extractors, recomputing the Fisher discriminant, and then seeing whether the
new output matches the user-supplied labels better than before. If the new feature extractors produce a better result, the
change is kept, otherwise the change is undone.

After a preset number of cycles of the evolutionary algorithm, we turn to optimizing the second stage. The grayscale
image output by the first stage is fed into the initially random feature extractors in the morphological stage and a second
set of morphological attribute planes are computed. As before, these are fed into a linear combination, whose weights
are computed using the Fisher discriminant algorithm, to produce a “cleaned up” grayscale plane in which high values
correspond to regions that are spectrally, texturally and morphologically similar to the pixels identified in the user
markup.

The evolutionary algorithm is now used to optimize the attribute extractors in the morphological phase, exactly as
before. The spectral/texture attribute extractors are left untouched, and so we do not need to recompute the output of the
first stage. The evolutionary algorithm is run for a preset number of cycles, usin the same algorithm as before.

fter optimizing the he optimization

st
visually appealing classification.

ld values in the new images, and can even further train the classifier with additional training data if desired.

p
combination of these attributes using the Fisher discriminant technique4 that maximizes the separation, in attribute
space, of the pixels labeled as “water” and “non-water”. Applying this linear combination to the attribute planes results
in a single grayscale image in which high intensity regions correspond to regions that are most like the pixels marked a
water.

g

A
c

morphological stage, we return to optimizing the spectral/texture stage again. T
ontinues in this fashion, alternating between several cycles optimizing the spectral/texture stage, and several cycles

optimizing the morphological stage. Optimization continues until the user hits the “Stop” button and reviews the results.

At this stage, the user can apply the classifier to arbitrary areas of the image (including the entire image), and can adju
the final threshold and shape filter options in order to obtain a

3.6. Putting the Classifier to Use
All information related to the trained classifier, including attribute extractor structure, linear combination weights,
threshold values and shape filter options; are stored in a “solution object” which can be stored in a file and retrieved at a
later date. A previously trained classifier can be applied to other images of the same basic type (i.e. the same sensor,
same ground resolution and same post-processing) to produce pixel classifications. The user can experiment with

reshoth

In many cases the classifier produced by Genie Pro will get most of the image labeled correctly but will make some
mistakes. These glitches can be cleaned up at this stage by the user, using simple manual raster editing tools provided
by Genie Pro.

Since Genie Pro is fundamentally a pixel classifier, its basic output is in the form of a labeled raster image. Rasters are
expensive to store and manipulate, and so it is usual to transform the labeled regions identified by Genie Pro into vector
overlays. Genie Pro provides a number of standard vectorization tools, including an outline vectorizer suitable for
delineating large regions; a centerline vectorizer suitable for delineating long thin regions such as roads; and a centroid
vectorizer, suitable for identifying the centers of small objects. These vector overlays can be saved to files in the
standard shapefile format and imported into other GIS systems.

3.7. Implementation Details
Genie Pro is written entirely in C++ for speed and compatibility. The graphical interface uses the Qt toolkit from
Trolltech, Inc.6 which provides a cross-platform windowing environment. The code is written in a portable fashion and

rent kinds of data.
Precise evaluation is further complicated by the fact that Genie Pro is an interactive tool, and that to get the most out of

s, including knowing how much markup to provide, and knowing what options to

raw

;

acy: Producing a vector overlay quickly is no use if the delineation of the feature of interest is not of

4.2. Sponsor Evaluation
rgely been sponsored by a US government agency with an interest in turning satellite

 tools. The order in which each
analyst used each tool was varied so as to avoid l imary evaluation criterion was total time elapsed
to produce a vector overlay, as defined above. The exceed the accuracy criteria laid down by the

e analysts were informally asked to rate each of the tools in terms of user-friendliness

nnaire, both Genie Pro and Feature Analyst scored highly. Note that the version of Genie Pro
sed in this evaluation lacked many of the advanced features described in this paper, so we would anticipate an even

Genie Pr
imagery
imag y
vari o ed
out by o ble
tools.

compiles and runs on both Windows and Unix-like environments, such as Linux.

4. EVALUATION

4.1. Evaluation Criteria
Genie Pro is a complex software tool that is intended for use on a wide variety of tasks with diffe

it, the user must develop certain skill
provide to the system.

Nonetheless, we can define at least three key areas in which Genie Pro should perform well:

• Speed: From a practical viewpoint, we are interested in the total time elapsed between the instant that new
imagery arrives at the analyst; and the moment at which the analyst obtains a sufficiently accurate vector
overlay representing the feature of interest. The time will include the time to load in and display the imagery
the time to provide training markup; the training time itself; the time taken to apply the resulting classifier to
the entire image; any time required to manually correct the results; and the time to produce the vector overlay.

• Accur
sufficiently high quality. Many organizations that carry out mapping tasks specify certain maximum error
tolerances that are acceptable in valid overlays.

• User-Friendliness: A tool may produce accurate results in a short time, but be so tedious to use that analysts
quickly grow tired of it. Fortunately, many enhancements to the user-friendliness of the software are tightly
correlated to enhancements in the speed and quality of the output produced by the software.

Genie Pro’s development has la
imagery into maps. The sponsor has recently completed a sophisticated evaluation of Genie Pro in a simulated
operational scenario. Four software tools were involved in the evaluation: Genie Pro; Feature Analyst from VLS, Inc.;7
eCognition from Definiens Imaging;8 and Neural Fusion from BAE Systems.9 Four image analysts were also involved
in the evaluation. Each analyst tackled the same set of mapping tasks with each of the

earning effects. The pr
 overlays had to meet or

sponsor organization. Finally, th
and usefulness.

The detailed results of this evaluation are not yet publicly available, but in summary, Genie Pro was rated as the best
performing tool, as measured by total elapsed time on the mapping task. Feature Analyst was a close second. On the
user-experience questio
u
better result if the evaluation was to be carried out now.

5. CONCLUSIONS
o is a sophisticated semi-automatic tool used primarily for deriving vector overlays from satellite or aerial

 data. It is specifically intended to be applicable to a wide variety of tasks, and to be effective on a range of
 types. It makes use of spectral, texture and shape information in an extremely flexible framework. It runs on a er

ety f different computer platforms and understands many different image formats natively. In an evaluation carri
ur sponsor, Genie Pro was the top performer in a comparison with several other similar commercially availa

REFERENCES

eryan and A.K. Jain, “Texture Analysis”, Handbook of Pattern Recognition and Computer Vi

1 M. Tuc sion, pp. 235-276,
World Scientific Publishing, 1993.

 Brumby, N.R. Harvey, R.B. Porter, J.J. Szymanski and J.J. Bloch, GENIE: A Hybrid

2 S. Perkins, J. Theiler, S.P.
Genetic Algorithm for Feature Classification in Multi-Spectral Images, Proc. SPIE 4120, pp. 52-62, 2000.
3 S. Perkins, N.R. Harvey, S.P. Brumby and K.Lacker, Support Vector Machines for Broad Area Feature Extracion in
Remotely Sensed Images, Proc. SPIE 4381, 2001.
4 C. Bishop, Neural Networks for Pattern Recognition, Oxford University Press, 2nd edition, 1995.
5 C. Burges, A Tutorial on Support Vector Machines for Pattern Recognition, Data Mining and Knowledge Discovery,
2(2), pp. 955-974, 1998.
6 http://www.trolltech.com
7 http://www.featureanalyst.com
8 http://www.definiens-imaging.com
9 http://www.alphatech.com

	1. INTRODUCTION
	2. BACKGROUND
	2.1. Performance Issues in Pixel Classification
	2.2. Usability Issues in Pixel Classification
	2.3. Previous Work
	3. GENIE PRO IN DETAIL
	3.1. The Genie Pro Processing Pipeline
	3.2. Spectral and Texture Attribute Extraction
	3.3. Local Morphological Attribute Extraction
	3.4. Thresholding and Shape Filtering
	3.5. Learning to Classify Pixels
	3.6. Putting the Classifier to Use
	3.7. Implementation Details

	4. EVALUATION
	4.1. Evaluation Criteria
	4.2. Sponsor Evaluation

	5. CONCLUSIONS

